Use of the 21-gene Oncotype DX® Breast Recurrence Score® assay in the neoadjuvant treatment setting

André Robidoux, MD¹; Debbie McCullough, MS²; Anna Lau, PhD²; Melissa Stöppler, MD²; Calvin Chao, MD²
¹Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada; ²Genomic Health, Inc., Redwood City, CA, USA.

BACKGROUND

- The 21-gene Recurrence Score (RS) assay is used to determine prognosis and select post-operative adjuvant hormone and/or chemotherapy in HR-positive, HER2-negative breast cancer [1,2]. Its use in neoadjuvant therapy is less established.
- Eleven percent of all commercially submitted RS assays are performed on core biopsy tissue samples. Overall success rates on core biopsy submissions exceed 97% [3].
- Response to neoadjuvant therapy can predict favorable outcome, render inoperable tumors operable, and improve eligibility for breast-conserving surgery [4].
- Thus, the ability to select pre-operative therapy and to identify patients more likely to achieve pathological or clinical response to neoadjuvant therapy is of clinical interest.

OBJECTIVE

To summarize published and presented evidence for use of the RS assay in the neoadjuvant setting

METHODS

- Published and presented studies of the RS assay used in patients undergoing neoadjuvant therapy were reviewed.
- Study findings were summarized descriptively, by type of neoadjuvant therapy received (chemotherapy [NACT] or hormonal therapy [NAHT]) and by study endpoint used to measure response.

RESULTS

Table 1. List of Studies Included

Study	Patients	NAT received	Endpoint(s)					
NACT Studies								
Gianni 2005 [5]	89 (ER±)	DOX/PAC × 3 cycles → PAC × 12 cycles	% pCR (pathology review of surgical sample)					
Chang 2008 [6]	72 (ER±, HER2±)	DOC × 4 cycles	% cCR (RECIST criteria)					
Pivot 2014 [7]	81 (ER+, HER2-)	CT (NOS)	RS distribution by pCR (yes vs no)					
Yardley 2015 [8]	108 evaluable (ER±, HER2-) (168 enrolled)	IXA/CYC × 3 to 6 cycles	% pCR (RECIST criteria)					
Soran 2016 [9]	60 (ER+, HER2-)	DOX/CYC/TAX × 24 weeks	% tumor response ^[a] , % cPR, % pCR					
NAHT studies	NAHT studies							
Akashi-Tanaka 2009 [10]	43 (ER+, PR+)	ANA or TAM × 4 months	% clinical response (WHO criteria)					
Ueno 2014 [11]	64 (ER+)	EXE × 24 weeks	% clinical response (RECIST criteria)					
NACT vs NAHT studies								
Zelnak 2013 [12]	46 (ER+ and/or PR+, HER2-)	RS <11: EXE RS 11-24: EXE vs DOC/CYC × 6 cycles RS ≥25: DOC/CYC × 6 cycles	% pCR in breast and axilla at surgery					
Bear 2016 [13]	64 (HR+, HER2-)	RS <11: HT (NOS) RS 11-25: HT (NOS) vs CT (NOS) RS ≥26: CT (NOS)	% cPR, % cCR, % clinical response, % pCR in breast and axilla, % successful BCS					

[a] Percentage tumor size reduction was based on pre-therapy size (largest dimension) and detailed pathology evaluation of the resection specimen. The pre-therapy tumor size was abstracted from clinical charts by MRI, ultrasound, mammogram, physical examination maximum dimension (unidimensional measurement). The post-therapy tumor size was defined as the product of: maximum dimension of tumor-bed (or area of fibrosis) × percentage cellularity (compared with pre-therapy biopsy) of the tumor-bed (or area of fibrosis) by microscopic exam.

ANA, anastrozole; BCS, breast-conserving surgery; cCR, clinical complete response; cPR, clinical partial response; CYC, cyclophosphamide; CT, chemotherapy; DOC, docetaxel; DOX, doxorubicin; ER, estrogen receptor; HR, hormone receptor; HT, hormonal therapy; IXA, ixabepilone; NOS, not otherwise specified; PAC, paclitaxel; pCR, pathologic complete response; PR, progesterone receptor; TAM, tamoxifen; TAX, taxane

RESULTS

Figure 1. RS Group Distribution

- The Gianni study did not report distribution of RS results.
- The large proportions of patients with RS ≥31 in the Chang and Yardley studies most likely reflected the high numbers of ER- and/or HER2+ patients in those studies.
- 45% of patients in the Yardley study had triple-negative disease.

Table 2. Response to Neoadjuvant Therapy, by RS Group

		Endpoint(s)	Response to neoadjuvant therapy				
Study	N		RS <18	RS 1	8-30	RS ≥31	P value
NACT Studies							
Gianni 2005	89	% pCR	Con	.005 ^[a]			
Chang 2008	72	% cCR	Odds of clinical response increased 5-fold with higher RS results (per 50 units)				
Pivot 2014	81	% pCR	0%	18%		30%	.02 ^[b]
Yardley 2015	108	% pCR	0%	0%		26%	.002[c]
Soran 2016	60	% tumor response	37%	60%		48%	.43 ^[d]
NAHT studies	·						
Akashi-Tanaka 2009	43	% clinical response	64%	31%		31%	.11 ^[d]
Ueno 2014	64	% clinical response	59%	59%		20%	.015 ^[b]
NACT vs NAHT studies	3						
			RS <11	RS 11-24 (HT)	RS 11-24 (CT)	RS ≥25	
Zelnak 2013	46	% pCR	0%	0%	0%	22%	_
			RS <11	RS 11-24 (HT)	RS 11-24 (CT)	RS ≥26	
		% clinical response (cCR + cPR)	83%	50%	73%	93%	.049 ^[b]
Bear 2016	64	% pCR (breast and axilla)	0%	0%	0%	14%	NS
		% successful BCS	75%	72%	64%	57%	NS

[a] Likelihood-ratio test; [b] Fisher's exact test; [c] Mantel-Haenszel chi-square; [d] Trend test.

BCS, breast-conserving surgery; cCR, clinical complete response; cPR, clinical partial response; CT, chemotherapy; HT, hormonal therapy; NS, not significant; pCR, pathologic complete response.

RESULTS

Figure 2. Response to Neoadjuvant Therapy, by RS Group

- Patients with high RS results tend to experience pCR or cCR with NACT.
- Patients with low RS results tend to experience CR with NAHT.
- Soran et al reported a trend toward better tumor response with higher RS results (p=0.06); however, according to authors, nonsignificant results may have been related to underpowered sample size (less than half of planned 130 evaluable patients were available for RS analysis). Additionally, 9 of 69 patients with ER+, HER2- (by IHC) tumors were excluded after the RS assay found HER2+ status by RT-PCR.

Conclusions

- Neoadjuvant studies of the 21-gene RS assay are consistent with adjuvant studies in that RS results correlate with observed benefits from CT and HT.
- Findings suggest that lower RS results are associated with greater clinical responses from NAHT, while higher RS results are associated with greater clinical and pathologic responses from NACT.
- The RS assay performed on pre-therapy core biopsies in patients with ER+ locally advanced breast tumors may help guide treatment decision options for NACT vs NAHT or primary surgery to maximize opportunities to achieve successful breast conserving surgery outcomes.
- Further investigations of the clinical utility of the RS assay in this setting are warranted.

REFERENCES

- 1. Paik S, et al. N Engl J Med. 2004;351(27):2817-26.
- 2. Dowsett M, et al. J Clin Oncol. 2010;28(11):1829-34.
- 3. Anderson J, et al. Cancer Res. 2009;69(24 suppl):6021.
- 4. Kaufmann M, et al. J Clin Oncol. 2006;24(12):1940-49.
- 5. Gianni L, et al. J Clin Oncol. 2005;23(29):7265-77.
- 6. Chang JC, et al. Breast Cancer Res Treat. 2008;108(2):233-40.
- 7. Pivot X, et al. EBCC 2014.

- 8. Yardley DA, et al. Breast Cancer Res Treat. 2015;154(2):299-308.
- 9. Soran A, et al. Breast Dis. 2016;36(2-3):65-71.
- 10. Akashi-Tanaka S, et al. Breast. 2009;18(3):171-4.
- 11. Ueno T, et al. Int J Clin Oncol. 2014;19(4):607-13.
- 12. Zelnak AB, et al. J Clin Oncol. 2013;31(15 suppl):562.
- 13. Bear HD, et al. SABCS 2016. (*J Surg Oncol.* 2017 [manuscript in press]).